- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求直线交点坐标
- 由方程组的解的个数判断直线位置关系
- 由直线交点的个数求参数
- 由直线的交点坐标求参数
- 三线能围成三角形的问题
- 直线交点系方程及应用
- 坐标法的应用——交点坐标
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
根据下列条件,求圆的标准方程:
(1)已知点A(1,1),B(﹣1,3),且AB是圆的直径,求圆的标准方程;
(2)圆与y轴交于A(0,﹣4),B(0,﹣2),圆心在直线2x﹣y﹣7=0上,求圆的方程.
(1)已知点A(1,1),B(﹣1,3),且AB是圆的直径,求圆的标准方程;
(2)圆与y轴交于A(0,﹣4),B(0,﹣2),圆心在直线2x﹣y﹣7=0上,求圆的方程.
如图,在平面直角坐标系xOy中,椭圆E :
的焦距为4,两条准线间的距离为8,A,B分别为椭圆E的左、右顶点.

(1)求椭圆E 的标准方程;
(2)已知图中四边形ABCD 是矩形,且BC=4,点M,N分别在边BC,CD上,AM与BN相交于第一象限内的点P .①若M,N分别是BC,CD的中点,证明:点P在椭圆E上;②若点P在椭圆E上,证明:
为定值,并求出该定值.


(1)求椭圆E 的标准方程;
(2)已知图中四边形ABCD 是矩形,且BC=4,点M,N分别在边BC,CD上,AM与BN相交于第一象限内的点P .①若M,N分别是BC,CD的中点,证明:点P在椭圆E上;②若点P在椭圆E上,证明:

已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( )
A.(0,1) | B.![]() | C.![]() | D.![]() |
已知直线
:
.
(1)若直线
不经过第四象限,求
的取值范围;
(2)若直线
交
轴负半轴于点
,交
轴正半轴于点
,
为坐标原点,设
的面积为4,求直线
的方程.


(1)若直线


(2)若直线








已知直线l:kx-2y-3+k=0.
(1)若直线l不经过第二象限,求k的取值范围.
(2)设直线l与x轴的负半轴交于点A,与y轴的负半轴交于点B,若△AOB的面积为4(O为坐标原点),求直线l的方程
(1)若直线l不经过第二象限,求k的取值范围.
(2)设直线l与x轴的负半轴交于点A,与y轴的负半轴交于点B,若△AOB的面积为4(O为坐标原点),求直线l的方程