- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求直线交点坐标
- + 由方程组的解的个数判断直线位置关系
- 由直线交点的个数求参数
- 由直线的交点坐标求参数
- 三线能围成三角形的问题
- 直线交点系方程及应用
- 坐标法的应用——交点坐标
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
两条直线
与
的交点坐标就是方程组
的实数解,给出以下三种说法:
①若方程组无解,则两直线平行;
②若方程组只有一解,则两直线相交;
③若方程组有无数多解,则两直线重合.
其中说法正确的个数为( )



①若方程组无解,则两直线平行;
②若方程组只有一解,则两直线相交;
③若方程组有无数多解,则两直线重合.
其中说法正确的个数为( )
A.1 | B.2 | C.3 | D.0 |
已知直线l:
(A,B不全为0),两点
,
,若
,且
,则()





A.直线l与直线P1P2不相交 | B.直线l与线段P2P1的延长线相交 | C.直线l与线段P1P2的延长线相交 | D.直线l与线段P1P2相交 |
已知等腰△ABC中,AB=BC,P在底边AC上的任一点,PE⊥AB于点E,PF⊥BC于点F,CD⊥AB于点
A.求证:CD=PE+P | B. |