- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求直线交点坐标
- 由方程组的解的个数判断直线位置关系
- 由直线交点的个数求参数
- 由直线的交点坐标求参数
- 三线能围成三角形的问题
- 直线交点系方程及应用
- 坐标法的应用——交点坐标
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,A、B是海岸线OM、ON上两个码头,海中小岛有码头Q到海岸线OM、ON的距离分别为
、
,测得
,
,以点O为坐标原点,射线OM为x轴的正半轴,建立如图所示的直角坐标系,一艘游轮以
小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线BB经过点Q).

(1)问游轮自码头A沿
方向开往码头B共需多少分钟?
(2)海中有一处景点P(设点P在
平面内,
,且
),游轮无法靠近,求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.






(1)问游轮自码头A沿

(2)海中有一处景点P(设点P在



已知
分别为椭圆
的左、右焦点,
为该椭圆的一条垂直于
轴的动弦,直线
与
轴交于点
,直线
与直线
的交点为
.
(1)证明:点
恒在椭圆
上.
(2)设直线
与椭圆
只有一个公共点
,直线
与直线
相交于点
,在平面内是否存在定点
,使得
恒成立?若存在,求出该点坐标;若不存在,说明理由.










(1)证明:点


(2)设直线







