- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设F1是双曲线C:
﹣
=1(a>0,b>0)的左焦点,O是坐标原点,若P是双曲线C的渐近线与圆x2+y2=a2的一个交点,且|PF1|=3|PO|>b,则C的离心率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图,设F1,F2是椭圆C:
(a>b>0)的左、右焦点,直线y=kx(k>0)与椭圆C交于A,B.已知椭圆C的焦距是2,四边形AF1BF2的周长是4
.

(1)求椭圆C的方程;
(2)直线AF1,BF1分别与椭圆C交于M,N,求△MNF1面积的最大值.



(1)求椭圆C的方程;
(2)直线AF1,BF1分别与椭圆C交于M,N,求△MNF1面积的最大值.
已知椭圆
的左焦点为
是椭圆上关于原点
对称的两个动点,当点
的坐标为
时,
的周长恰为
.
(1)求椭圆
的方程;
(2)已知点
,斜率为2的直线
交椭圆
于
两点,求
面积的最大值.







(1)求椭圆

(2)已知点





已知椭圆
与双曲线
有相同的左右焦点
,
,若点
是
与
在第一象限内的交点,且
,设
与
的离心率分别为
,则
的取值范围是( )












A.![]() | B.![]() | C.![]() | D.以上答案都不对 |
《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用,还提出了一元二次方程的解法问题.直角三角形的三条边长分别称“勾”“股”“弦”,设
、
分别是双曲线
的左、右焦点,
是该双曲线右支上的一点,若
、
分别是
的“勾”、“股”,且
,则双曲线的离心率为( )








A.![]() | B.![]() | C.2 | D.![]() |