- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间向量的有关概念
- 空间共线向量定理
- 空间共面向量定理
- 空间向量的数乘运算
- 空间向量的数量积运算
- 空间向量的正交分解与坐标表示
- + 空间向量运算的坐标表示
- 空间向量的坐标表示
- 空间向量的坐标运算
- 空间向量模长的坐标表示
- 空间向量平行的坐标表示
- 空间向量垂直的坐标表示
- 空间向量夹角余弦的坐标表示
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在四棱锥P-ABCD中,底面ABCD是平行四边形,
=(2,-1,-4),
=(4,2,0),
=(-1,2,-1),则PA与底面ABCD的关系是( )



A.相交 | B.垂直 |
C.不垂直 | D.成60°角 |
已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以
为邻边的平行四边形的面积;
(2)若|a|=
,且a分别与
垂直,求向量a的坐标.
(1)求以

(2)若|a|=

