- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面平行
- 证明线面平行
- + 补全线面平行的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在四棱锥S﹣ABCD中,SA⊥底面ABCD,底面ABCD是平行四边形,E是线段SD上一点.

(1)若E是SD的中点,求证:SB∥平面ACE;
(2)若SA=AB=AD=2,SC=2
,且DE
DS,求二面角S﹣AC﹣E的余弦值.

(1)若E是SD的中点,求证:SB∥平面ACE;
(2)若SA=AB=AD=2,SC=2


在棱长为a的正方体ABCD-A1B1C1D1中,E是棱DD1的中点:

(1)求点D到平面A1BE的距离;
(2)在棱
上是否存在一点F,使得B1F∥平面A1BE,若存在,指明点F的位置;若不存在,请说明理由.

(1)求点D到平面A1BE的距离;
(2)在棱

如图,在四棱锥
中,底面
是正方形,
,
.

(1)证明:
平面
;
(2)若
是
的中点,在棱
上是否存在点
,使
平面
?若存在,求出
的值,并证明你的结论.





(1)证明:


(2)若







矩形ABCD中,AB=2AD=2,P为线段DC的中点,将△ADP沿AP折起,使得平面ADP⊥平面ABCP.

(1)在DC上是否存在点E使得AD∥平面PBE?若存在,求出点E的位置;若不存在,请说明理由.
(2)求二面角P﹣AD﹣B的余弦值

(1)在DC上是否存在点E使得AD∥平面PBE?若存在,求出点E的位置;若不存在,请说明理由.
(2)求二面角P﹣AD﹣B的余弦值
在等腰Rt△ABC中,∠BAC=90°,腰长为2,D、E分别是边AB、BC的中点,将△BDE沿DE翻折,得到四棱锥B﹣ADEC,且F为棱BC中点,BA
.

(1)求证:EF⊥平面BAC;
(2)在线段AD上是否存在一点Q,使得AF∥平面BEQ?若存在,求二面角Q﹣BE﹣A的余弦值,若不存在,请说明理由.


(1)求证:EF⊥平面BAC;
(2)在线段AD上是否存在一点Q,使得AF∥平面BEQ?若存在,求二面角Q﹣BE﹣A的余弦值,若不存在,请说明理由.
如图,在四棱锥P-ABCD中,AD∥BC,
ADC=
PAB=90°,BC=CD=
AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.

(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.




(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
如图,四棱柱ABCD-
中,地面ABCD为直角梯形,AB∥CD,AB⊥BC,平面ABCD⊥平面AB
,∠BA
=60°,AB=A
=2BC=2CD=2

(1)求证:BC⊥A
;
(2)求二面角D-A
-B的余弦值;
(3)在线段D
上是否存在点M,使得CM∥平面DA
?若存在,求
的值;若不存在,请说明理由.





(1)求证:BC⊥A

(2)求二面角D-A

(3)在线段D



如图,在四棱锥E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

(I)求棱锥C-ADE的体积;
(II)求证:平面ACE⊥平面CDE;
(III)在线段DE上是否存在一点F,使AF∥平面BCE?若存在,求出
的值;若不存在,说明理由.

(I)求棱锥C-ADE的体积;
(II)求证:平面ACE⊥平面CDE;
(III)在线段DE上是否存在一点F,使AF∥平面BCE?若存在,求出

如图,在四棱锥
中,底面ABCD为菱形,
,Q为AD的中点,
.

(1)求证:
平面PQB;
(2)在线段PC上是否存在点M,使
平面MDB?若存在,求出点M的位置;若不存在,请说明理由.




(1)求证:

(2)在线段PC上是否存在点M,使
