刷题首页
题库
高中数学
题干
如图,在四棱锥
S
﹣
ABCD
中,
SA
⊥底面
ABCD
,底面
ABCD
是平行四边形,
E
是线段
SD
上一点.
(1)若
E
是
SD
的中点,求证:
SB
∥平面
ACE
;
(2)若
SA
=
AB
=
AD
=2,
SC
=2
,且
DE
DS
,求二面角
S
﹣
AC
﹣
E
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-14 05:15:22
答案(点此获取答案解析)
同类题1
如图,四棱锥
的底面是正方形,每条侧棱的长都是底面边长的
倍,
为侧棱
上的点.
(1)求证:
;
(2)若
平面
,求二面角
的大小;
(3)在(2)的条件下,侧棱
上是否存在一点
,使得
平面
.若存在,求
的值;若不存在,试说明理由.
同类题2
如图,在三棱锥
D
﹣
ABC
中,已知△
BCD
是正三角形,
AB
⊥平面
BCD
,
AB
=
BC
,
E
为
BC
的中点,
F
在棱
AC
上,且
AF
=3
FC
,
(1)求证:
AC
⊥平面
DEF
;
(2)若
M
为
BD
的中点,问
AC
上是否存在一点
N
,使
MN
∥平面
DEF
?若存在,说明点
N
的位置;若不存在,试说明理由;
(3)求平面
DEF
与平面
ABD
所成的锐二面角的余弦值.
同类题3
如图,在多面体
中,四边形
为矩形,
,
均为等边三角形,
,
.
(1)过
作截面与线段
交于点
,使得
平面
,试确定点
的位置,并予以证明;
(2)在(1)的条件下,求直线
与平面
所成角的正弦值.
同类题4
如图,四边形
为矩形,且
平面
,
,
为
的中点.
(1)求证:
;
(2)求三棱锥
的体积;
(3)探究在
上是否存在点
,使得
平面
,并说明理由.
同类题5
如图,在四棱锥
中,
与
交于点
,
,
,
.
(Ⅰ)在线段
上找一点
,使得
平面
,并证明你的结论;
(Ⅱ)若
,
,
,求二面角
的余弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
补全线面平行的条件