- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 圆锥的结构特征辨析
- 判断几何体是否为圆锥
- + 圆锥中截面的有关计算
- 圆锥的展开图及最短距离问题
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的半径之比为
,截去的小圆锥的母线长为
,则圆台的母线长为( ).


A.![]() | B.![]() | C.![]() | D.![]() |
用一个半径为12厘米圆心角为
的扇形纸片PAD卷成一个侧面积最大的无底圆锥(接口不用考虑损失),放于水平面上.

(1)无底圆锥被一阵风吹倒后(如图1),求它的最高点到水平面的距离;
(2)扇形纸片PAD上(如图2),C是弧AD的中点,B是弧AC的中点,卷成无底圆锥后,求异面直线PA与BC所成角的大小.


(1)无底圆锥被一阵风吹倒后(如图1),求它的最高点到水平面的距离;
(2)扇形纸片PAD上(如图2),C是弧AD的中点,B是弧AC的中点,卷成无底圆锥后,求异面直线PA与BC所成角的大小.
过某一圆锥的高的中点和一个三等分点(该三等分点距圆锥顶点比距圆锥底面圆心更近),分别作平行于该圆锥底面的平面,圆锥被分割成三个部分,则这三个部分的侧面积之比为( )
A.![]() | B.![]() | C.![]() | D.![]() |