- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 空间几何体的结构
- 棱柱
- 棱锥
- 棱台
- 圆柱
- 圆锥
- 圆台
- 球
- 旋转体
- 多面体
- 组合体
- 空间几何体的三视图和直观图
- 空间几何体的表面积与体积
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在正方体上任意选择
个顶点,然后将它们两两相连,则可能组成的几何图形为_________(写出所有正确结论的编号).
①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.

①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.
下列三种说法:
①底面是矩形的平行六面体是长方体;
②棱长相等的直四棱柱是正方体;
③有两条侧棱垂直于底面一边的平行六面体是直平行六画体.
其中,正确的个数是( )
①底面是矩形的平行六面体是长方体;
②棱长相等的直四棱柱是正方体;
③有两条侧棱垂直于底面一边的平行六面体是直平行六画体.
其中,正确的个数是( )
A.1 | B.2 | C.3 | D.0 |
纸制的正方体的六个面根据其方位分别标记为上,下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位是( )


A.南 | B.北 | C.西 | D.下 |
下列说法错误的是________ (填序号).
①多面体至少有四个面;
②九棱柱有9条侧棱,9个侧面,侧面为平行四边形;
③长方体、正方体都是棱柱;
④三棱柱的侧面为三角形.
①多面体至少有四个面;
②九棱柱有9条侧棱,9个侧面,侧面为平行四边形;
③长方体、正方体都是棱柱;
④三棱柱的侧面为三角形.
下列说法中正确的为________(填序号).
(1)棱柱的侧棱长相等,侧面都是平行四边形:(2)各侧面都是正方形的四棱柱一定是正方体;(3)正棱锥的侧面是等边三角形;(4)有两个面互相平行,其余各面都是等腰梯形的几何体是棱台.
(1)棱柱的侧棱长相等,侧面都是平行四边形:(2)各侧面都是正方形的四棱柱一定是正方体;(3)正棱锥的侧面是等边三角形;(4)有两个面互相平行,其余各面都是等腰梯形的几何体是棱台.
给出下列命题:①有一条侧棱与底面两边垂直的棱柱是直棱柱;②底面为正多边形的棱柱为正棱柱;③顶点在底面上的射影到底面各顶点的距离相等的棱锥是正棱锥;④A、B为球面上相异的两点,则通过A、B的大圆有且只有一个.其中正确说法的个数是
A.0个 | B.1个 |
C.2个 | D.3个 |