- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式求积的最大值
- + 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
打赢扶贫攻坚战,到2020年全面建成小康社会,是***向全世界和全国人民的承诺.一贫困户在政府扶持下结合地方特色联合当地几户贫困户创办一家农产品公司.为了振兴乡村,打好扶贫攻坚战,某市党政府开展了地标特产展销会.该公司拟定在2020年元旦展销期间举行产品促销活动,经测算该产品的年销量t万件(生产量与销量相等)与促销费用x万元满足
已知2020年生产该产品还需投入成本4+t万元(不含促销费),促销费x满足当
产品销量价格定为5元/件,当
产品销量价格定为
元/件(其中a为正常数).
(1)试将2020年该产品的利润y万元表示为促销费费x万元的函数;
(2)2020年该公司促销费投入多少万元时,公司利润最大?




(1)试将2020年该产品的利润y万元表示为促销费费x万元的函数;
(2)2020年该公司促销费投入多少万元时,公司利润最大?
已知f(x)=32x-(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是( )
A.(-∞,-1) | B.(-∞,2![]() |
C.(-1,2![]() | D.(-2![]() ![]() |
运货卡车以每小时x千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油
升,司机的工资是每小时14元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.

(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
如果函数
图象上任意一点的坐标
都满足方程
,那么正确的选项是( )



A.![]() ![]() ![]() |
B.![]() ![]() ![]() |
C.![]() ![]() ![]() |
D.![]() ![]() ![]() |
某化工厂生产的某种化工产品,当年产量在150吨至250吨之内,其年生产的总成本
(万元)与年产量
(吨)之间的关系可近似地表示为
.
(1)当年产量为多少吨时,每吨的平均成本最低,并求每吨最低平均成本
(2)若每吨平均出厂价为16万元,求年生产多少吨时,可获得最大的年利润,并求最大年利润.



(1)当年产量为多少吨时,每吨的平均成本最低,并求每吨最低平均成本
(2)若每吨平均出厂价为16万元,求年生产多少吨时,可获得最大的年利润,并求最大年利润.
已知命题p:∀a∈R,且a>0,a+≥2,命题q:∃x0∈R,sinx0+cosx0=
,则下列判断正确的是( )
A.p是假命题 | B.q是真命题 | C.![]() | D.![]() |
有下列三个命题:
①“k=1”是“函数y=cos2kx-sin2kx的最小正周期为π”的充要条件;
②“a=3”是“直线ax+2y+3a=0与直线3x+(a-1)y=a-7相互垂直”的充要条件;
③函数的最小值为2.
其中是假命题的为________(将你认为是假命题的序号都填上).
下列命题中:①函数
的最小值是
;②在
中,若
,则
是等腰或直角三角形;③如果正实数
满足
,则
;④如果
是可导函数,则
是函数
在
处取到极值的必要不充分条件.其中正确的命题是( )












A.①②③④ | B.①④ | C.②③④ | D.②③ |