- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式求积的最大值
- + 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本为
万元.

(1)若使每台机器人的平均成本最低,问应买多少台?
(2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣(如图).经实验知,每台机器人的日平均分拣量为
,(单位:件).已知传统的人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大时,用人数量比引进机器人前的用人数量最多可减少百分之几?


(1)若使每台机器人的平均成本最低,问应买多少台?
(2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣(如图).经实验知,每台机器人的日平均分拣量为

某公司一年购买某种货物900吨,现分次购买,若每次购买x吨,运费为9万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是( )
A.10 | B.15 | C.30 | D.45 |
常州地铁项目正在紧张建设中,通车后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔
(单位:分钟)满足
,
.经测算,地铁载客量与发车时间间隔
相关,当
时地铁为满载状态,载客量为1200人,当
时,载客量会减少,减少的人数与
的平方成正比,且发车时间间隔为2分钟时的载客量为560人,记地铁载客量为
.
⑴ 求
的表达式,并求当发车时间间隔为6分钟时,地铁的载客量;
⑵ 若该线路每分钟的净收益为
(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?








⑴ 求

⑵ 若该线路每分钟的净收益为

已知函数
(
).当点
在函数
图象上运动时,对应的点
在函数
图象上运动,则称函数
是函数
的相关函数.
(1)解关于
的不等式
;
(2)对任意的
,
的图象总在其相关函数图象的下方,求
的取值范围;
(3)设函数
,
.当
时,求
的最大值.








(1)解关于


(2)对任意的



(3)设函数



