- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式求积的最大值
- + 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)若不等式
的解集是
,求
的值;
(2)当
时,若不等式
对一切实数
恒成立,求
的取值范围;
(3)当
时,设
,若存在
,使得
成立,求
的取值范围.

(1)若不等式



(2)当




(3)当





已知O是坐标原点,M,N是抛物线y=x2上不同于O的两点,OM⊥ON,
有下列四个结论:
①|OM|•|ON|≥2;
②
;
③直线MN过抛物线y=x2的焦点;
④O到直线MN的距离小于等于1.
其中,所有正确结论的序号是_____.
有下列四个结论:
①|OM|•|ON|≥2;
②

③直线MN过抛物线y=x2的焦点;
④O到直线MN的距离小于等于1.
其中,所有正确结论的序号是_____.
已知直角
的三边长
,满足
(1)在
之间插入2011个数,使这2013个数构成以
为首项的等差数列
,且它们的和为
,求的最小值;
(2)已知
均为正整数,且
成等差数列,将满足条件的三角形的面积从小到大排成一列
,且
,求满足不等式
的所有
的值;
(3)已知
成等比数列,若数列
满足
,证明:数列
中的任意连续三项为边长均可以构成直角三角形,且
是正整数.



(1)在




(2)已知






(3)已知




