- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式(均值定理)
- + 基本(均值)不等式求最值
- 基本不等式求积的最大值
- 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元.同时,公司每年需要付出设备的维修和工人工资等费用,第一年各种费用2万元,第二年各种费用4万元,以后每年各种费用都增加2万元.
(1)引进这种设备后,第几年后该公司开始获利;
(2)这种设备使用多少年,该公司的年平均获利最大?
(1)引进这种设备后,第几年后该公司开始获利;
(2)这种设备使用多少年,该公司的年平均获利最大?
某货轮匀速行驶在相距
海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为
),其他费用为每小时
元,且该货轮的最大航行速度为
海里/小时.
(1)请将从甲地到乙地的运输成本
(元)表示为航行速度
(海里/小时)的函数;
(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?




(1)请将从甲地到乙地的运输成本


(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?
某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为
元时,销售量可达到
万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:
(1)每套丛书售价定为100元时,书商所获得的总利润是多少万元?
(2)每套丛书售价定为多少元时,单套丛书的利润最大?


(1)每套丛书售价定为100元时,书商所获得的总利润是多少万元?
(2)每套丛书售价定为多少元时,单套丛书的利润最大?