- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 一元二次不等式与二次函数、一元二次方程的关系
- 一元二次不等式在实数集上恒成立问题
- 一元二次不等式在某区间上的恒成立问题
- + 一元二次不等式在某区间上有解问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系xOy中,已知直线l:y=x+m和圆C:(x﹣2)2+(y﹣1)2=4.若直线l上存在点P,使
,则实数m的取值范围是_____.

已知函数
相邻两对称轴间的距离为
,若将
的图象先向左平移
个单位,再向下平移1个单位,所得的函数
为奇函数.
(1)求
的解析式,并求
的对称中心;
(2)若关于
的方程
在区间
上有两个不相等的实根,求实数
的取值范围.






(1)求


(2)若关于




数列
满足:对一切
,有
,其中
是与
无关的常数,称数列上有界(有上界),并称
是它的一个上界,对一切
,有
,其中
是与
无关的常数,称数列下有界(有下界),并称
是它的一个下界.一个数列既有上界又有下界,则称为有界数列,常值数列是一个特殊的有界数列.设
,数列
满足
,
,
.
(1)若数列
为常数列,试求实数
、
满足的等式关系,并求出实数
的取值范围;
(2)下面四个选项,对一切实数
,恒正确的是.(写出所有正确选项,不需要证明其正确,但需要简单说明一下为什么不选余下几个)
(3)若
,
,且数列
是有界数列,求
的值及
的取值范围.
















(1)若数列




(2)下面四个选项,对一切实数

A.当![]() ![]() | B.当![]() ![]() |
C.当![]() ![]() | D.当![]() ![]() |





已知非零向量
,
满足(2
-
)⊥
,集合A={x|x2+(|
|+|
|)x+|
||
|=0}中有且仅有唯一一个元素.
(1)求向量
,
的夹角θ;
(2)若关于t的不等式|
-t
|<|
-m
|的解集为空集,求实数m的值.









(1)求向量


(2)若关于t的不等式|




已知函数
,其函数图象的相邻两条对称轴之间的距离为
.
(1)求函数
的解析式及对称中心;
(2)将函数
的图象向左平移
个单位长度,再向上平移
个单位长度得到函数
的图象,若关于
的方程
在区间
上有两个不相等的实根,求实数
的取值范围.


(1)求函数

(2)将函数








函数
满足:
①
;②在区间
内有最大值无最小值;
③在区间
内有最小值无最大值;④经过
(1)求
的解析式;
(2)若
,求
值;
(3)不等式
的解集不为空集,求实数
的范围.

①


③在区间


(1)求

(2)若


(3)不等式

