- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- + 数列求和
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- 分组(并项)法求和
- 数列求和的其他方法
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列{an}的前n项和为Sn,若4Sn=(2n﹣1)an+1+1,且a1=1.
(1)求数列{an}的通项公式;
(2)设cn=
,数列{cn}的前n项和为Tn.①求Tn;②对于任意的n∈N*及x∈R,不等式kx2﹣6kx+k+7+3Tn>0恒成立,求实数k的取值范围.
(1)求数列{an}的通项公式;
(2)设cn=

已知数列
的前
项和
,且
是等比数列
的前两项,记
与
之间包含的数列
的项数为
,如
与
之间的项为
,则
.
(1)求数列
和
的通项公式;
(2)求数列
的前
项和.













(1)求数列


(2)求数列


已知点(1,
)是函数
且
)的图象上一点,等比数列
的前
项和为
,数列
的首项为
,且前
项和
满足
-
=
+
(
).
(1)求数列
和
的通项公式;
(2)若数列{
前
项和为
,问
>
的最小正整数
是多少?
















(1)求数列


(2)若数列{





