- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设数列
的前
项的和为
且
数列
满足
且对任意正整数
都有
成等比数列.
(1)求数列
的通项公式.
(2)证明数列
为等差数列.
(3)令
问是否存在正整数
使得
成等比数列?若存在,求出
的值,若不存在,说明理由.








(1)求数列

(2)证明数列

(3)令




已知{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和.
(1)求通项an及Sn;
(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及前n项和Tn.
(1)求通项an及Sn;
(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及前n项和Tn.
若数列
是公差为2的等差数列,数列
满足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求数列
,
的通项公式;
(2)设数列
满足
,数列
的前n项和为
,若不等式
对一切n∈N*恒成立,求实数λ的取值范围.


(1)求数列


(2)设数列





对一切n∈N*恒成立,求实数λ的取值范围.
下面数组均由三个数组成:(1,2,3),(2,4,6),(3,8,11),(4,16,20),(5,32,37),…,(an,bn,cn),请写出cn 的表达式cn=_______.