- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 等比数列的定义
- + 等比数列的通项公式
- 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 等比数列的性质
- 等比数列的函数特性
- 等比数列的前n项和
- 等比数列前n项和的性质
- an与Sn的关系——等比数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某地区原有森林木材存有量为
,且每年增长率为
,因生产建设的需要,每年年末要砍伐的木材量为
,设
为第
年末后该地区森林木材存量,则
__________.






已知等差数列
的首项为p,公差为
,对于不同的自然数
,直线
与
轴和指数函数
的图象分别交于点
与
(如图所示),记
的坐标为
,直角梯形
、
的面积分别为
和
,一般地记直角梯形
的面积为
.

(1)求证:数列
是公比绝对值小于1的等比数列;
(2)设
的公差
,是否存在这样的正整数
,构成以
,
,
为边长的三角形?并请说明理由;
(3)设
的公差
为已知常数,是否存在这样的实数p使得(1)中无穷等比数列
各项的和
?并请说明理由.

















(1)求证:数列

(2)设






(3)设




已知数列{an}满足:a1=1,
,记
.
(1)求b1,b2的值;
(2)证明:数列{bn}是等比数列;
(3)求数列{an}的通项公式.


(1)求b1,b2的值;
(2)证明:数列{bn}是等比数列;
(3)求数列{an}的通项公式.