- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- + 等比数列
- 等比数列的定义
- 等比数列的通项公式
- 等比数列的性质
- 等比数列的函数特性
- 等比数列的前n项和
- 等比数列前n项和的性质
- an与Sn的关系——等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人要走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第四天走的路程为( )
A.12里 | B.24里 | C.36里 | D.48里 |
已知数列
是等比数列,首项
,公比
,其前
项和为
,且
,
,
成等差数列.
(1)求数列
的通项公式;
(2)若数列
满足
,
为数列
的前
项和,且
对任意
恒成立,求实数
的最大值.








(1)求数列

(2)若数列







