- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 等差数列及其通项公式
- 等差中项
- 等差数列的性质
- 等差数列的函数特性
- + 等差数列的前n项和
- 求等差数列前n项和
- 等差数列前n项和的基本量计算
- 含绝对值的等差数列前n项和
- an与Sn的关系——等差数列
- 等差数列前n项和的性质
- 等差数列前n项和的函数特性
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
给出下列命题:①等比数列1,
,
,
,…(
)的前
项和为
;②等差数列
中,若
,
,则该数列的前13项或14项之和最大;③若等差数列
公差为
,则其前
项和
;④若等比数列
单调递增的充要条件是首项
,且公比
;⑤若数列
满足
,
,则
.其中正确的是______(把你认为正确的命题序号都填上).




















已知数列
的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.设数列
的前n项和为
且满足
(1)求数列
的通项公式;
(2)若
求正整数
的值;
(3)是否存在正整数
,使得
恰好为数列
的一项?若存在,求出所有满足条件的正整数
;若不存在,请说明理由.




(1)求数列

(2)若


(3)是否存在正整数



