- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 根据数列递推公式写出数列的项
- 由递推关系式求通项公式
- 由递推数列研究数列的有关性质
- + 求递推关系式
- 递推数列的实际应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在平面上作边长为
的正方形,以所作正方形的一边为斜边向外作等腰直角三角形,然后以该等腰直角三角形的一条直角边为边向外作正方形,再以新的正方形的一边为斜边向外作等腰直角三角形,
如此这般的作正方形和等腰直角三角形,不断地持续下去,求所有正方形与等腰直角三角形的面积之和.



对任意函数
,可按流程图构造一个数列发生器,其工作原理如下:①输入数据
,数列发生器输出
;②若
,则数列发生器结束工作;若
,则将
反馈回输入端再输出
,并且依此规律继续下去.现定义
.
(1)若输入
,则由数列发生器产生数列
,请写出数列
的所有项;
(2)若要数列发生器产生一个无穷的常数数列,试求输入的初始数据
的值;
(3)若输入
时,产生的无穷数列
满足:对任意正整数
,均有
,求
的
取值范围.








(1)若输入



(2)若要数列发生器产生一个无穷的常数数列,试求输入的初始数据

(3)若输入





取值范围.

已知
位数满足下列条件:①各个数字只能从集合
中选取;②若其中有数字4,则在4的前面不含2.将这样的n位数的个数记为
(1)求
;
(2)探究
与
之间的关系,求出数列
的通项公式;
(3)对于每个正整数
,在
与
之间插入
个
得到一个新数列
,设
是数列
的前
项和,试探究
能否成立?写出你探究得到的结论并给出证明.



(1)求

(2)探究



(3)对于每个正整数










已知数列
满足
,对任意的
,都有
.
(1)求数列
的递推公式
(2)数列
满足
,求数列
的通项公式;
(3)在(2)的条件下,设
,问是否存在实数
使得数列
是单调递增数列?若存在,求出
的取值范围;若不存在,请说明你的理由.




(1)求数列

(2)数列



(3)在(2)的条件下,设




如图,
是一块半径为
的半圆形纸板,在
的左下端剪去一个半径为
的半圆后得到图形
,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得图形
、
、
、
、
,记纸板
的面积为
,则
________.














一位幼儿园老师给班上k(k≥3)个小朋友分糖果.她发现糖果盒中原有糖果数为a0,就先从别处抓2块糖加入盒中,然后把盒内糖果的
分给第一个小朋友;再从别处抓2块糖加入盒中,然后把盒内糖果的
分给第二个小朋友;…,以后她总是在分给一个小朋友后,就从别处抓2块糖放入盒中,然后把盒内糖果的
分给第n(n=1,2,3,…k)个小朋友.如果设分给第n个小朋友后(未加入2块糖果前)盒内剩下的糖果数为an.
(1)当k=3,a0=12时,分别求a1,a2,a3;
(2)请用an-1表示an;令bn=(n+1)an,求数列{bn}的通项公式;
(3)是否存在正整数k(k≥3)和非负整数a0,使得数列{an}(n≤k)成等差数列,如果存在,请求出所有的k和a0,如果不存在,请说明理由.



(1)当k=3,a0=12时,分别求a1,a2,a3;
(2)请用an-1表示an;令bn=(n+1)an,求数列{bn}的通项公式;
(3)是否存在正整数k(k≥3)和非负整数a0,使得数列{an}(n≤k)成等差数列,如果存在,请求出所有的k和a0,如果不存在,请说明理由.