- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
著名的斐波那契数列,因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故还称为“兔子数列”.它满足:
,
且
,则
______.




已知数列
为等差数列,且满足
,
,数列
的前
项和为
,且
,
.
(1)求数列
的通项公式;
(2)证明:
是等比数列,并求
的通项公式;
(3)若对任意的
,不等式
恒成立,求实数
的取值范围.








(1)求数列

(2)证明:


(3)若对任意的


