- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量Sn(万件)近似地满足Sn=
(21n-n2-5)(n=1,2,…,12).按此预测,在本年度内,需求量超过1.5万件的月份是( )

A.5月、6月 | B.6月、7月 |
C.7月、8月 | D.8月、9月 |
某市2006年底有住房面积1200万平方米,计划从2007年起,每年拆除20万平方米的旧住房.假定该市每年新建住房面积是上年年底住房面积的5%.
(1)分别求2007年底和2008年底的住房面积;
(2)求2026年底的住房面积.(计算结果以万平方米为单位,且精确到0.01)
(1)分别求2007年底和2008年底的住房面积;
(2)求2026年底的住房面积.(计算结果以万平方米为单位,且精确到0.01)
已知数列
的各项为正数,其前
项和为
满足
,设
是等差数列,并求
的通项公式;
(2)设数列
的前
项和为
,求
的最大值.
(3)设数列
的通项公式为
,问: 是否存在正整数t,使得
成等差数列?若存在,求出t和m的值;若不存在,请说明理由.




.


(2)设数列




(3)设数列




若数列
满足
(
;
,
),称数列
为
数列,记
为其前
项和.
(Ⅰ)写出一个满足
,且
的
数列
;
(Ⅱ)若
,
,证明:若
数列
是递增数列,则
;反之,若
,则
数列
是递增数列;
(Ⅲ)对任意给定的整数
(
),是否存在首项为0的
数列
,使得
?如果存在,写出一个满足条件的
数列
;如果不存在,说明理由.









(Ⅰ)写出一个满足




(Ⅱ)若








(Ⅲ)对任意给定的整数






