- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量共线定理证明点共线问题
- 平面向量共线定理证明线平行问题
- + 已知向量共线(平行)求参数
- 平面向量共线定理的推论
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
,
,
是直线
上的
个不同的点(
,
、
,均为非零常数),其中数列
为等差数列.
(1)求证:数列
是等差数列;
(2)若点
是直线
上一点,且
,求证:
;
(3)设
,且当
时,恒有
(
和
都是不大于
的正整数,且
)试探索:若
为直角坐标原点,在直线
上是否存在这样的点
,使得
成立?请说明你的理由.










(1)求证:数列

(2)若点




(3)设










