- 集合与常用逻辑用语
- 函数与导数
- 利润最大问题
- 面积、体积最大问题
- 成本最小问题
- + 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某辆汽车以xkm/h的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60≤x≤120)时,每小时的油耗(所需要的汽油量)为
,其中k为常数,若汽车以120km/h的速度行驶时,每小时的油耗为11.5L.
(1)求k的值;
(2)求该汽车每小时油耗的最小值.

(1)求k的值;
(2)求该汽车每小时油耗的最小值.
在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为
(米/单位时间),每单位时间的用氧量为
(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为
(米/单位时间),每单位时间用氧量为1.5(升),记潜水员在此次考察活动中的总用氧量为
(升).
(1)求
关于
的函数关系式;
(2)求当下潜速度
取什么值时,总用氧量最少.




(1)求


(2)求当下潜速度

某单位用3240万元购得一块空地,计划在该地块上建造一栋至少15层、每层3000平方米的楼房.经测算,如果将楼房建为x(x≥15)层,则每平方米的平均建筑费用为840+kx(单位:元).已知楼房建为15层时,每平方米的平均建筑费用为1245元.
(1)求k的值.
(2)当楼房建为多少层时,楼房每平方米的平均综合费用最少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=
)
(1)求k的值.
(2)当楼房建为多少层时,楼房每平方米的平均综合费用最少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=

如图,某隧道的剖面图是由半圆及矩形
组成,交通部门拟在隧道顶部安装通风设备(视作点
),为了固定该设备,计划除从隧道最高点
处使用钢管垂直向下吊装以外,再在两侧自
两点分别使用钢管支撑.已知道路宽
,设备要求安装在半圆内部,所使用的钢管总长度为
.

(1)①设
,将
表示为关于
的函数;
②设
,将
表示为关于
的函数;
(2)请选用(1)中的一个函数关系式,说明如何设计,所用的钢管材料最省?







(1)①设



②设



(2)请选用(1)中的一个函数关系式,说明如何设计,所用的钢管材料最省?
为迎接新中国成立70周年,学校布置一椭圆形花坛,如图所示,
是其中心,
是椭圆的长轴,
是短轴的一个端点.现欲铺设灌溉管道,拟在
上选两点
,
,使
,沿
、
、
铺设管道,设
,若
,
,

(1)求管道长度
关于角的函数及
的取值范围;
(2)求管道长度
的最小值.














(1)求管道长度


(2)求管道长度

合肥一中、六中为了加强交流,增进友谊,两校准备举行一场足球赛,由合肥一中版画社的同学设计一幅矩形宣传画,要求画面面积为
,画面的上、下各留
空白,左、右各留
空白.

(1)如何设计画面的高与宽的尺寸,才能使宣传画所用纸张面积最小?
(2)设画面的高与宽的比为
,且
,求
为何值时,宣传画所用纸张面积最小?




(1)如何设计画面的高与宽的尺寸,才能使宣传画所用纸张面积最小?
(2)设画面的高与宽的比为



如图所示是某社区公园的平面图,ABCD为矩形,
米,
米,为了便于居民观赏花草,现欲在矩形ABCD内修建5条道路AE,DE,EF,BF,CF,道路的宽度忽略不计,考虑对称美,要求直线EF垂直平分边AD,且线段EF的中点是矩形的中心,求这5条路总长度的最小值.



在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为
+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为
(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升).
(1)求y关于v的函数关系式;
(2)若c≤v≤15(c>0),求当下潜速度v取什么值时,总用氧量最少.



(1)求y关于v的函数关系式;
(2)若c≤v≤15(c>0),求当下潜速度v取什么值时,总用氧量最少.