刷题首页
题库
高中数学
题干
在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为
+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为
(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升).
(1)求y关于v的函数关系式;
(2)若c≤v≤15(c>0),求当下潜速度v取什么值时,总用氧量最少.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-04 08:09:51
答案(点此获取答案解析)
同类题1
某商品进货价每件50元,销售价格为每件
元,据市场调查,当销售价格
时,每天可售出
件,每天获得的利润为
y
元.
(1)写出
关于
的函数表达式;
(2)若要每天获得的利润最多,则售价应定为每件多少元?
同类题2
某公司一年需购买某种原料400吨,设公司每次都购买
吨,每次运费为4万元,一年的总存储费用为
万元.
(1)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?
(2)要使一年的总运费与总存储费用之和不超过200万元,则每次购买量在什么范围?
同类题3
为迎接世博会,要设计如图的一张矩形广告,该广告含有大小相等的左中右三个矩形栏目,这三栏的面积之和为60 000
,四周空白的宽度为10 cm,栏与栏之间的中缝空白的宽度为5 cm,怎样确定广告矩形栏目高与宽的尺寸(单位:cm),能使整个矩形广告面积最小.
同类题4
某汽车运输公司购买了一批豪华大客车投入客运,据市场分析,每辆客车营运的总利润y万元与营运年数x(x∈N)的关系为y=-x
2
+12x-25,则每辆客车营运多少年报废可使其营运年平均利润最大( )
A.2
B.4
C.5
D.6
同类题5
围建一个面积为360平方米的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2米的进出口,如图所示,已知旧墙的维修费用为45元/米,新墙的造价为180元/米,设利用的旧墙的长度为
(单位:米),修建围墙的总费用为
(单位:元),试确定
的值,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
分式型函数模型的应用
函数单调性、极值与最值的综合应用