刷题首页
题库
高中数学
题干
某单位用3240万元购得一块空地,计划在该地块上建造一栋至少15层、每层3000平方米的楼房.经测算,如果将楼房建为x(x≥15)层,则每平方米的平均建筑费用为840+kx(单位:元).已知楼房建为15层时,每平方米的平均建筑费用为1245元.
(1)求k的值.
(2)当楼房建为多少层时,楼房每平方米的平均综合费用最少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=
)
上一题
下一题
0.99难度 解答题 更新时间:2018-10-05 08:08:32
答案(点此获取答案解析)
同类题1
在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为
(米/单位时间),每单位时间的用氧量为
(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为
(米/单位时间),每单位时间用氧量为1.5(升),记潜水员在此次考察活动中的总用氧量为
(升).
(1)求
关于
的函数关系式;
(2)求当下潜速度
取什么值时,总用氧量最少.
同类题2
如图,一条小河岸边有相距
的
两个村庄(村庄视为岸边上
两点),在小河另一侧有一集镇
(集镇视为点
),
到岸边的距离
为
,河宽
为
,通过测量可知,
与
的正切值之比为
.当地政府为方便村民出行,拟在小河上建一座桥
(
分别为两岸上的点,且
垂直河岸,
在
的左侧),建桥要求:两村所有人到集镇所走距离之和最短,已知
两村的人口数分别是
人、
人,假设一年中每人去集镇的次数均为
次.设
.(小河河岸视为两条平行直线)
(1)记
为一年中两村所有人到集镇所走距离之和,试用
表示
;
(2)试确定
的余弦值,使得
最小,从而符合建桥要求.
同类题3
如图,某地有三家工厂,分别位于矩形
的两个顶点
,
及
的中点
处,
,
.为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与
,
等距的一点
处,建造一个污水处理厂,并铺设三条排污管道
,
,
.记铺设管道的总长度为
.
(1)按下列要求建立函数关系式:
①设
,将
表示成
的函数;
②设
,将
表示成
的函数.
(2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短.
同类题4
如图,某小区准备在直角围墙
(
)内建有一个矩形
的少儿游乐场,
分别在墙
上,为了安全起见,过矩形的顶点
建造一条如图所示的围栏
,
分别在墙
上,其中,
,
.
(1)①设
,用
表示围栏
的长度;
②设
,用
表示围栏
的长度;
(2)在第一问中,选择一种表示方法,求如何设计,使得围栏
的长度最小.
同类题5
当圆柱形金属饮料罐的容积一定时,要使所用的材料最省,则圆柱的高
与底面半径
应满足的关系为______.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
用料最省问题