刷题首页
题库
高中数学
题干
一个玩具盘由一个直径为2米的半圆
O
和一个矩形
ABCD
构成,
米,如图所示.小球从
A
点出发以5 V的速度沿半圆
O
轨道滚到某点
E
处后,经弹射器以6 V的速度沿与点
E
切线垂直的方向弹射到落袋区
BC
内,落点记为
F
.设
弧度,小球从
A
到
F
所需时间为
T
.
(1)试将
T
表示为
的函数
,并写出定义域;
(2)当
满足什么条件时,时间
T
最短.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-07 08:41:18
答案(点此获取答案解析)
同类题1
如图,准备在墙上钉一个支架,支架由两直杆
与
焊接而成,焊接点
把杆
分成
两段,其中两固定点
间距离为1米,
与杆
的夹角为
,杆
长为1米,若制作
段的成本为
,制作
段的成本是
,制作杆
成本是
.设
,则制作整个支架的总成本记为
元.
(1)求
关于
的函数表达式,并求出
的取值范围;
(2)问
段多长时,
最小?
同类题2
设甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/小时,已知该汽车每小时的运输成本
P
(元)关于速度
v
(千米/小时)的函数关系是
.
(1)求全程运输成本
Q
(元)关于速度
v
的函数关系式;
(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值.
同类题3
甲、乙两地相距
S
千米,汽车从甲地匀速行驶到乙地,速度不得超过
c
千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度
v
(千米/时)的平方成正比、比例系数为
b
;固定部分为
a
元.
(1)把全程运输成本
y
(元)表示为速度
v
(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
同类题4
某车间有50名工人,要完成150件产品的生产任务,每件产品由3个
型零件和1个
型零件配套组成,每个工人每小时能加工5个
型零件或者3个
型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一种型号的零件.设加工
型零件的工人数为
名
.
(1)设完成
、
型零件加工所需的时间分别为
、
小时,写出
与
的解析式;
(2)当
取何值时,完成全部生产任务的时间最短?
同类题5
现需建造一个容积为V的圆柱形铁桶,它的盖子用铝合金材料,已知单位面积的铝合金的价格是铁的3倍。要使该容器的造价最低,则铁桶的底面半径r与高h的比值为_______
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
成本最小问题