刷题首页
题库
高中数学
题干
用长为18米的篱笆借助一墙角围成一个矩形
(如图所示),在点
处有一棵树(忽略树的直径)距两墙的距离分别为
米和
米,现需要将此树圈进去,设矩形
的面积为
(平方米),长
为
(米).
(1)设
,求
的解析式并指出其定义域;
(2)试求
的最小值
.
上一题
下一题
0.99难度 解答题 更新时间:2018-11-29 08:53:24
答案(点此获取答案解析)
同类题1
某桶装水经营部每天的房租,人员工资等固定成本为200元,每桶水的进价是5元,销售价
(元)与日均销售量
(桶)的关系如下表,为了收费方便,经营部将销售价定为整数,并保持经营部每天盈利.
6
7
8
9
10
11
12
…
480
440
400
360
320
280
240
…
(1)写出
的值,并解释其实际意义;
(2)求
表达式,并求其定义域;
(3)求经营部利润表达式
,请问经营部怎样定价才能获得最大利润?
同类题2
设函数
.
(1)若定义域为
,求
的值域;
(2)若
在
上的单调函数,求
的取值范围;
(3)若定义域为
时,
的值域为
,求
的值.
同类题3
某企业为适应市场需求,准备投入资金16万元生产W和R型两种产品。经市场预测,生产W型产品所获利润
(万元)与投入资金
(万元)成正比例关系,且当投入资金为6万元时,可获利润1.5万元。生产R型产品所获利润
(万元)与投入资金
(万元)满足关系
,为获得最大总利润,问生产W、R型产品各应投入资金多少万元?获得的最大总利润是多少?
同类题4
某小电子产品2018年的价格为9元/件,年销量为
件,经销商计划在2019年将该电子产品的价格降为
元/件(其中
),经调查,顾客的期望价格为5元/件,经测算,该电子产品的价格下降后年销量新增加了
件(其中常数
).已知该电子产品的成本价格为4元/件.
(1)写出该电子产品价格下降后,经销商的年收益
与实际价格
的函数关系式:(年收益=年销售收入-成本)
(2)设
,当实际价格最低定为多少时,仍然可以保证经销商2019年的收益比2018年至少增长20%?
同类题5
某电器专卖店销售某种型号的空调,记第
天(
,
)的日销售量为
(单位;台).函数
图象中的点分别在两条直线上,如图,该两直线交点的横坐标为
,已知
时,函数
.
(1)当
时,求函数
的解析式;
(2)求
的值及该店前
天此型号空调的销售总量;
(3)按照经验判断,当该店此型号空调的销售总量达到或超过
台,且日销售量仍持续增加时,该型号空调开始旺销,问该店此型号空调销售到第几天时,才可被认为开始旺销?
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题
建立拟合函数模型解决实际问题