刷题首页
题库
高中数学
题干
用长为18米的篱笆借助一墙角围成一个矩形
(如图所示),在点
处有一棵树(忽略树的直径)距两墙的距离分别为
米和
米,现需要将此树圈进去,设矩形
的面积为
(平方米),长
为
(米).
(1)设
,求
的解析式并指出其定义域;
(2)试求
的最小值
.
上一题
下一题
0.99难度 解答题 更新时间:2018-11-29 08:53:24
答案(点此获取答案解析)
同类题1
某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次.
(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式;
(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.
同类题2
某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量
y
(件)与销售单价
x
(元/件),可近似看做一次函数
y
=
kx
+
b
的关系(图象如图所示).
(1)根据图象,求一次函数
y
=
kx
+
b
的表达式;
(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为
S
元,
①求
S
关于
x
的函数表达式;
②求该公司可获得的最大毛利润,并求出此时相应的销售单价.
同类题3
一个人以6米/秒的速度去追赶停在交通灯前的的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为
米,那么,此人()
A.可在7秒内追上汽车
B.可在9秒内追上汽车
C.不能追上汽车,但其间最近距离为14米
D.不能追上汽车,但其间最近距离为7米
同类题4
濮阳市生产总值连续两年持续增加,第一年的增长率为
,第二年的增长率为
,则我市这两年生产总值的年平均增长率为__________.
同类题5
如图,建立平面直角坐标系
,
轴在地平面上,
轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程
表示的曲线上,其中
与发射方向有关.炮弹的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)若规定炮弹的射程不小于6千米,设在此条件下炮弹射出的最大高度为
,求
的最小值.
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题
建立拟合函数模型解决实际问题