刷题首页
题库
高中数学
题干
如图,某机械厂要将长
,宽
的长方形铁皮
进行裁剪.已知点
为
的中点,点
在边
上,裁剪时先将四边形
沿直线
翻折到
处(点
分别落在直线
下方点
处,
交边
于点
),再沿直线
裁剪.
(1)当
时,试判断四边形
的形状,并求其面积;
(2)若使裁剪得到的四边形
面积最大,请给出裁剪方案,并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-26 03:18:51
答案(点此获取答案解析)
同类题1
一边长为2的正方形纸板,在纸板的四角截去四个边长均为
的小正方形,然后做成一个无盖方盒.方盒的容积的最大值为
_________________
.
同类题2
要做一个圆锥形漏斗,其母线长为
,要使其体积最大,则其高为( )
A.
B.
C.
D.
同类题3
有一矩形硬纸板材料(厚度忽略不计),一边
长为6分米,另一边足够长.现从中截取矩形
(如图甲所示),再剪去图中阴影部分,用剩下的部分
恰好
能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中
是以
为圆心、
的扇形,且弧
,
分别与边
,
相切于点
,
.
(1)当
长为1分米时,求折卷成的包装盒的容积;
(2)当
的长是多少分米时,折卷成的包装盒的容积最大?
同类题4
如图,在矩形
与扇形
拼接而成的平面图形中,
,
,
.点
在弧
上,
在
上,
.设
,则当平面区域
(阴影部份)的面积取到最大值时,
_______.
同类题5
某地拟规划种植一批芍药,为了美观,将种植区域(区域Ⅰ)设计成半径为
的扇形
,中心角
.为方便观赏,增加收入,在种植区域外围规划观赏区(区域Ⅱ)和休闲区(区域Ⅲ),并将外围区域按如图所示的方案扩建成正方形
,其中点
,
分别在边
和
上.已知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.
(1)要使观赏区的年收入不低于5万元,求
的最大值;
(2)试问:当
为多少时,年总收入最大?
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题
三角函数在生活中的应用