刷题首页
题库
高中数学
题干
有一矩形硬纸板材料(厚度忽略不计),一边
长为6分米,另一边足够长.现从中截取矩形
(如图甲所示),再剪去图中阴影部分,用剩下的部分
恰好
能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中
是以
为圆心、
的扇形,且弧
,
分别与边
,
相切于点
,
.
(1)当
长为1分米时,求折卷成的包装盒的容积;
(2)当
的长是多少分米时,折卷成的包装盒的容积最大?
上一题
下一题
0.99难度 解答题 更新时间:2020-02-06 11:07:32
答案(点此获取答案解析)
同类题1
在三棱锥
中,
平面
,且
,
,
,当三棱锥
的体积最大时,此三棱锥的外接球的表面积为
__________
.
同类题2
如图,一个角形海湾AOB,∠AOB=2θ(常数θ为锐角).拟用长度为l(l为常数)的围网围成一个养殖区,有以下两种方案可供选择:
方案一 如图1,围成扇形养殖区OPQ,其中
=l;
方案二 如图2,围成三角形养殖区OCD,其中CD=l;
(1)求方案一中养殖区的面积S
1
;
(2)求证:方案二中养殖区的最大面积S
2
=
;
(3)为使养殖区的面积最大,应选择何种方案?并说明理由.
同类题3
若做一个容积为
的方低无盖水箱,则它的高为______时,用料最省.
同类题4
用一根长为
分米的铁丝制作一个长方体框架(由12条棱组成),使得长方体框架的底面长是宽的
倍.在制作时铁丝恰好全部用完且损耗忽略不计.现设该框架的底面宽是
分米,用
表示该长方体框架所占的空间体积(即长方体的体积).
(1)试求函数
的解析式及其定义域;
(2)当该框架的底面宽
取何值时,长方体框架所占的空间体积最大,并求出最大值.
同类题5
某种水箱用的“浮球”是由两个相同半球和一个圆柱筒组成,它的轴截面如图所示,已知半球的直径是
,圆柱筒高
,为增强该“浮球”的牢固性,给“浮球”内置一“双蝶形”防压卡,防压卡由金属材料杆
,
,
,
,
,
及
焊接而成,其中
,
分别是圆柱上下底面的圆心,
,
,
,
均在“浮球”的内壁上,
AC
,
BD
通过“浮球”中心
,且
、
均与圆柱的底面垂直.
(1)设
与圆柱底面所成的角为
,试用
表示出防压卡中四边形
的面积
,并写出
的取值范围;
(2)研究表明,四边形
的面积越大,“浮球”防压性越强,求四边形
面积取最大值时,点
到圆柱上底面的距离
.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题