- 集合与常用逻辑用语
- 函数与导数
- 导数在函数中的其他应用
- + 利用导数解决实际应用问题
- 利润最大问题
- 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分). 一物体沿直线以速度
(
的单位为:秒,
的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程?



已知
是定义在
上的可导函数.若函数
,满足
对
恒成立,则下面四个结论中,所有正确结论的序号是( )
①
;
②
对
成立;
③
可能是奇函数;
④
一定没有极值点.





①

②


③

④

A.①,② | B.①,③ | C.①,②,③ | D.②,③,④ |
(本小题满分14分)某地拟建一座长为
米的大桥
,假设桥墩等距离分布,经设计部门测算,两端桥墩
、
造价总共为
万元,当相邻两个桥墩的距离为
米时(其中
),中间每个桥墩的平均造价为
万元,桥面每1米长的平均造价为
万元.

(1)试将桥的总造价表示为
的函数
;
(2)为使桥的总造价最低,试问这座大桥中间(两端桥墩
、
除外)应建多少个桥墩?










(1)试将桥的总造价表示为


(2)为使桥的总造价最低,试问这座大桥中间(两端桥墩

