- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- 导数在研究函数中的作用
- + 导数的综合应用
- 导数在函数中的其他应用
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
函数
.
(1)求
的单调区间;
(2)在函数
的图象上取
两个不同的点,令直线AB的斜率
为k,则在函数的图象上是否存在点
,且
,使得
?若存
在,求A,B两点的坐标,若不存在,说明理由.

(1)求

(2)在函数


为k,则在函数的图象上是否存在点



在,求A,B两点的坐标,若不存在,说明理由.
某城市为配合国家“一带一路”战略,发展城市旅游经济,拟在景观河道的两侧,沿河岸直线
与
修建景观(桥),如图所示,河道为东西方向,现要在矩形区域
内沿直线将
与
接通.已知
,
,河道两侧的景观道路修复费用为每米
万元,架设在河道上方的景观桥
部分的修建费用为每米
万元.

(1)若景观桥长
时,求桥与河道所成角的大小;
(2)如何景观桥
的位置,使矩形区域
内的总修建费用最低?最低总造价是多少?











(1)若景观桥长

(2)如何景观桥


某公司准备投产一种新产品,经测算,已知每年生产
万件的该种产品所需要的总成本
(万元),依据产品尺寸,产品的品质可能出现优、中、差三种情况,随机抽取了1000件产品测量尺寸,尺寸分别在
,
,
,
,
,
,
(单位:
)中,经统计得到的频率分布直方图如图所示.

产品的品质情况和相应的价格
(元/件)与年产量
之间的函数关系如下表所示.
以频率作为概率解决如下问题:
(1)求实数
的值;
(2)当产量
确定时,设不同品质的产品价格为随机变量
,求随机变量
的分布列;
(3)估计当年产量
为何值时,该公司年利润最大,并求出最大值.











产品的品质情况和相应的价格


产品品质 | 立品尺寸的范围 | 价格![]() ![]() |
优 | ![]() | ![]() |
中 | ![]() | ![]() |
差 | ![]() | ![]() |
以频率作为概率解决如下问题:
(1)求实数

(2)当产量



(3)估计当年产量

已知f(x)=ax2(a∈R),g(x)=2lnx.
(1)讨论函数F(x)=f(x)-g(x)的单调性;
(2)若方程f(x)=g(x)在区间[
,e]上有两个不等解,求a的取值范围.
(1)讨论函数F(x)=f(x)-g(x)的单调性;
(2)若方程f(x)=g(x)在区间[

已知
是函数
的导函数,且对任意的实数x都有
(e是自然对数的底数),
,若不等式
的解集中恰有两个整数,则实数k的取值范围是( )





A.![]() | B.![]() | C.![]() | D.![]() |