- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- + 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
.
(Ⅰ)当
时,求函数
的极值;
(Ⅱ)当
时,讨论函数
单调性;
(Ⅲ)是否存在实数
,对任意的
,
,且
,有
恒成立?若存在,求出
的取值范围;若不存在,说明理由.


(Ⅰ)当


(Ⅱ)当


(Ⅲ)是否存在实数






已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(Ⅰ) 当a=-1时,求f(x)的最大值;
(Ⅱ) 若f(x)在区间(0,e]上的最大值为-3,求a的值;
(Ⅲ)当a=-1时,试推断方程
=
是否有实数解.
(Ⅰ) 当a=-1时,求f(x)的最大值;
(Ⅱ) 若f(x)在区间(0,e]上的最大值为-3,求a的值;
(Ⅲ)当a=-1时,试推断方程


已知函数
,实数
为常数).
(1)若
,且函数
在
上的最小值为0,求
的值;
(2)若对于任意的实数
,函数
在区间
上总是减函数,对每个给定的
,求
的最大值
.


(1)若




(2)若对于任意的实数





