- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- + 利用导数研究函数的最值
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数
的定义域为
,若存在常数
,使
对一切实数
均成立,则称
为“条件约束函数”. 现给出下列函数:






①;
②;
③;
④是定义在实数集
上的奇函数,且对一切
均有
.
已知函数
,
.
(Ⅰ)当
时,求曲线
在
处的切线方程;
(Ⅱ)当
时,讨论函数
的单调性;
(Ⅲ)设斜率为
的直线与函数
的图象交于
,
两点,其中
,求证:
.


(Ⅰ)当



(Ⅱ)当


(Ⅲ)设斜率为





