- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- + 利用导数研究函数的极值
- 函数极值的辨析
- 求已知函数的极值
- 根据极值求参数
- 函数(导函数)图象与极值的关系
- 利用导数研究函数的最值
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )


A.![]() | B.![]() |
C.![]() | D.![]() |
已知函数
,
,(其中
为自然对数的底数,
…).
(1)当
时,求函数
的极值;
(2)若函数
在区间
上单调递增,求
的取值范围;
(3)若
,当
时,
恒成立,求实数
的取值范围.




(1)当


(2)若函数



(3)若




已知函数f(x)=x3﹣ax2+bx+c(a,b,c∈R).
(1)若函数f(x)在x=﹣1和x=3处取得极值,试求a,b的值;
(2)在(1)的条件下,当x∈[﹣2,6]时,f(x)<2|c|恒成立,求c的取值范围.
(1)若函数f(x)在x=﹣1和x=3处取得极值,试求a,b的值;
(2)在(1)的条件下,当x∈[﹣2,6]时,f(x)<2|c|恒成立,求c的取值范围.