- 集合与常用逻辑用语
- 函数与导数
- 用导数判断或证明已知函数的单调性
- 利用导数求函数的单调区间
- 由函数的单调区间求参数
- + 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
(
是自然对数的底数)
(1)若直线
为曲线
的一条切线,求实数
的值;
(2)若函数
在区间
上为单调函数,求实数
的取值范围;
(3)设
,若
在定义域上有极值点(极值点是指函数取得极值时对应的自变量的值),求实数
的取值范围.


(1)若直线



(2)若函数



(3)设



已知函数
(其中
,
).
(1)当
时,求函数
在
点处的切线方程;
(2)若函数
在区间
上为增函数,求实数
的取值范围;
(3)求证:对于任意大于1的正整数
,都有
.



(1)当



(2)若函数



(3)求证:对于任意大于1的正整数


已知函数
,直线
为曲线
的切线(
为自然对数的底数).
(Ⅰ)求实数
的值;
(Ⅱ) 用
表示
中的最小值,设函数
,若函数
为增函数,求实数
的取值范围.




(Ⅰ)求实数

(Ⅱ) 用




