- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值( )


A.2 个 | B.1 个 | C.3 个 | D.4 个 |
欲设计如图所示的平面图形,它由上、下两部分组成,其中上部分是弓形(圆心为
,半径为
,
,
),下部分是矩形
.

(1)若
,求该平面图形的周长的最大值;
(2)若
,试确定
的值,使得该平面图形的面积最大.






(1)若

(2)若


已知函数

(1)若函数在区间
上存在极值,其中a >0,求实数a的取值范围;
(2)如果当
时,不等式
恒成立,求实数k的取值范围;
(3)求证:
.


(1)若函数在区间

(2)如果当


(3)求证:
