- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,其中
.
(1)若
在
上存在极值点,求a的取值范围;
(2)设
,
,若
存在最大值,记为
,则当
时,
是否存在最大值?若存在,求出其最大值;若不存在,请说明理由


(1)若


(2)设






已知函数
.
(1)当a=1时,求函数
的单调区间;
(2)若
在
上恒成立,求实数a的取值范围;
(3)是否存在实数a,使函数
的最小值是3?若存在,求出a的值;若不存在,说明理由.

(1)当a=1时,求函数

(2)若


(3)是否存在实数a,使函数

如图是
的导函数的图像,现有四种说法:

①
在
上是增函数;
②
是
的极小值点;
③
在
上是减函数,在
上是增函数;
④
是
的极小值点;
以上正确的序号为________.


①


②


③



④


以上正确的序号为________.