- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,其中
是自然数的底数,
.
(1)当
时,解不等式
;
(2)若
在
上是单调增函数,求
的取值范围;
(3)当
时,求整数
的所有值,使方程
在
上有解.



(1)当


(2)若



(3)当




设动直线x=m与函数f(x)=x3,g(x)=lnx的图象分别交于点M,N,则|MN|的最小值为( )
A. ![]() | B. ![]() | C.1+ln3 | D.ln3-1 |