刷题首页
题库
高中数学
题干
已知函数
.
(Ⅰ)当
时,求函数
的最小值;
(Ⅱ)求函数
在
上的最值;
(Ⅲ)试证明对任意的
∈都有
.
上一题
下一题
0.99难度 解答题 更新时间:2012-02-22 07:56:40
答案(点此获取答案解析)
同类题1
已知函数
(其中
e
是自然对数的底数).
Ⅰ
当
时,求
的最小值;
Ⅱ
当
时,求
在
上的最小值.
同类题2
已知函数
(
,
为自然对数的底数).
(1)若对于任意
,总存在
,使得
成立,求
的最小值;
(2)若
,函数
在区间
内有零点,求
的取值范围.
同类题3
已知函数
在区间
上为增函数,
.
(1)求实数
的取值范围;
(2)当
取最大值时,若直线
:
是函数
的图像的切线,且
,求
的最小值.
同类题4
在区间
上的最大值是( )
A.
B.
C.
D.
同类题5
已知函数
与
的图象都过点
,且在点
处有公共切线;
(1)求
,
的表达式;
(2)设
,求
在
上的最值.
相关知识点
函数与导数
导数及其应用
导数在研究函数中的作用
利用导数研究函数的最值
由导数求函数的最值
利用导数证明不等式