- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
函数
,其中
为常数.
(1)证明:对任意
,函数
图像恒过定点;
(2)当
时,不等式
在
上有解,求实数
的取值范围;
(3)若对任意
时,函数
在定义域上恒单调递增,求
的最小值.


(1)证明:对任意


(2)当




(3)若对任意



已知函数
.
(1)求
的单调减区间;
(2)若方程
有三个不同的实根,求
的取值范围;
(3)若
在区间[-2,2]上的最大值为20,求它在该区间上的最小值.

(1)求

(2)若方程


(3)若

已知定义在
上的函数
,其中
为大于零的常数.
(Ⅰ)当
时,令
,求证:当
时,
为自然对数的底数);
(Ⅱ)若函数
,在
处取得最大值,求
的取值范围.



(Ⅰ)当




(Ⅱ)若函数



已知函数
.
(Ⅰ)若
在
上的最大值为
,求实数
的值;
(Ⅱ)若对任意
,都有
恒成立,求实数
的取值范围;
(Ⅲ)在(Ⅰ)的条件下,设
,对任意给定的正实数
,曲线
上是否存在两点
,使得
是以
(
为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在
轴上?请说明理由.

(Ⅰ)若




(Ⅱ)若对任意



(Ⅲ)在(Ⅰ)的条件下,设








已知a>0,b
R,函数
.
(Ⅰ)证明:当0≤x≤1时,
(ⅰ)函数
的最大值为|2a-b|﹢a;
(ⅱ)
+|2a-b|﹢a≥0;
(Ⅱ) 若﹣1≤
≤1对x
[0,1]恒成立,求a+b的取值范围.


(Ⅰ)证明:当0≤x≤1时,
(ⅰ)函数

(ⅱ)

(Ⅱ) 若﹣1≤

