- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x对所有的b∈(-∞,0],x∈(e,e2]都成立,则实数a的取值范围是( )
A.[e,+∞) | B.[![]() | C.[![]() | D.[e2,+∞) |
已知函数
,
.
在
上有最大值9,最小值4.
(1)求实数
的值;
(2)若不等式
在
上恒成立,求实数
的取值范围;
(3)若方程
有三个不同的实数根,求实数
的取值范围.




(1)求实数

(2)若不等式



(3)若方程

