- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=ax2+x-xln x.
(1)若a=0,求函数f(x)的单调区间及极值;
(2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.
(1)若a=0,求函数f(x)的单调区间及极值;
(2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.
设函数
.
(1)若
是函数
的极值点,1为函数
的一个零点,求函数
在
上的最小值.
(2)当
时,函数
与
轴在
内有两个不同的交点,求
的取值范围.(其中
是自然对数的底数)

(1)若





(2)当





