- 集合与常用逻辑用语
- 函数与导数
- 求曲线切线的斜率(倾斜角)
- 求在曲线上一点处的切线方程
- 求过一点的切线方程
- + 已知切线(斜率)求参数
- 两条切线平行、垂直、重合(公切线)问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系内,如果两点
满足条件:①都在函数
的图象上;②
关于原点对称,则称
是函数的一对“奇点”(奇点
与
看作是同一奇点).已知函数
恰有两对“奇点”,则实数
的取值范围是( )








A.![]() | B.![]() | C.![]() | D.![]() |
已知函数
(
为自然对数的底数,
),在
处的切线为
.
(1)求函数
的解析式;
(2)在
轴上是否存在一点
,使得过
点可以作
的三条切钱?若存在,请求出横坐标为整数的
点坐标;若不存在,请说明理由.





(1)求函数

(2)在





已知函数
曲线
在原点处的切线为
.
(1)证明:曲线
与
轴正半轴有交点;
(2)设曲线
与
轴正半轴的交点为
,曲线在点
处的切线为直线
,求证:曲线
上的点都不在直线
的上方 ;
(3)若关于
的方程
(
为正实数)有不等实根
求证:



(1)证明:曲线


(2)设曲线







(3)若关于




