- 集合与常用逻辑用语
- 函数与导数
- 平均变化率
- + 导数的几何意义
- 求曲线切线的斜率(倾斜角)
- 求在曲线上一点处的切线方程
- 求过一点的切线方程
- 已知切线(斜率)求参数
- 两条切线平行、垂直、重合(公切线)问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)
如图,函数
的
图象与y轴交于点(0,
),且在该点处切线的斜
率为一2.
(1)求θ和ω的值;
(2)已知点A(
,0),点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当y0=
,x0∈[
,π]时,求x0的值.
如图,函数

图象与y轴交于点(0,

率为一2.
(1)求θ和ω的值;
(2)已知点A(



已知函数
,
.
(1)若
,则
,
满足什么条件时,曲线
与
在
处总有相同的切线?
(2)当
时,求函数
的单调减区间;
(3)当
时,若
对任意的
恒成立,求
的取值的集合.


(1)若






(2)当


(3)当




若存在实常数
和
,使得函数
和
对其定义域上的任意实数
分别满足:
和
,则称直线
为
和
的“隔离直线”.已知函数
和函数
,那么函数
和函数
的隔离直线方程为_________.














已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.