- 集合与常用逻辑用语
- 函数与导数
- 平均变化率
- + 导数的几何意义
- 求曲线切线的斜率(倾斜角)
- 求在曲线上一点处的切线方程
- 求过一点的切线方程
- 已知切线(斜率)求参数
- 两条切线平行、垂直、重合(公切线)问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,当
时,
取得极小值
.
(1)求
的值;
(2)记
,设
是方程
的实数根,若对于
定义域中任意的
,
.当
且
时,问是否存在一个最小的正整数
,使得
恒成立,若存在请求出
的值;若不存在请说明理由.
(3)设直线
,曲线
.若直线
与曲线
同时满足下列条件:
①直线
与曲线
相切且至少有两个切点;
②对任意
都有
.则称直线
与曲线
的“上夹线”.
试证明:直线
是曲线
的“上夹线”.




(1)求

(2)记











(3)设直线




①直线


②对任意




试证明:直线

