- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- + 导数及其应用
- 导数的概念和几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
商场销售某种商品的经验表明,该商品每日的销售量
(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(1) 求
的值;
(2) 若商品的成品为3元/千克, 试确定销售价格
的值,使商场每日销售该商品所获得的利润最大





(1) 求

(2) 若商品的成品为3元/千克, 试确定销售价格

一家小微企业生产某种小型产品的月固定成本为1万元,每生产1万件需要再投入2万元,假设该企业每个月可生产该小型产品
万件并全部销售完,每万件的销售收入为
万元,且每生产1万件政府给予补助
万元.
(1)求该企业的月利润
(万元)关于月产量
(万件)的函数解析式;
(2)若月产量
万件时,求企业在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件).
(注:月利润=月销售收入+月政府补助
月总成本)



(1)求该企业的月利润


(2)若月产量

(注:月利润=月销售收入+月政府补助

将一块边长为
的正方形纸片,先按图(1)所示的阴影部分截去四个全等的等腰三角形,然后将剩余部分沿虚线折叠并拼成一个正四棱锥模型(如图(2)所示),当该正四棱锥体积最大时,它的底面边长为_____.



某农业观光区的平面示意图如图所示,其中矩形
的长
千米,宽
千米,半圆的圆心
为
中点,为了便于游客观光休闲,在观光区铺设一条由圆弧
、线段
、
组成的观光道路,其中线段
经过圆心
,点
在线段
上(不含线段端点
、
),已知道路
、
的造价为每千米
万元,道路
造价为每千米
万元,设
,观光道路的总造价为
.

(1)试求
与
的函数关系式
,并写出
的取值范围;
(2)当
为何值时,观光道路的总造价
最小.






















(1)试求




(2)当


货车欲以xkm/h的速度行驶,去130km远的某地,按交通法规,限制x的允许范围是50≤x≤100,假设汽油的价格为2元/升,而汽车耗油的速率是
升/小时.司机的工资是14元/小时,试问最经济的车速是多少?这次行车往返的总费用最低是多少?

如图,某城市有一块半径为
的半圆形绿化区域(以
为圆心,
为直径),现对其进行改建,在
的延长线上取点
,
,在半圆上选定一点
,改建后绿化区域由扇形区域
和三角形区域
组成,其面积为
.设
.

(1)写出
关于
的函数关系式
,并指出
的取值范围;
(2)试问
多大时,改建后的绿化区域面积
取得最大值.












(1)写出




(2)试问


(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分)一家公司计划生产某种小型产品的月固定成本为
万元,每生产
万件需要再投入
万元.设该公司一个月内生产该小型产品
万件并全部销售完,每万件的销售收入为
万元,且每万件国家给予补助
万元. (
为自然对数的底数,
是一个常数.)
(Ⅰ)写出月利润
(万元)关于月产量
(万件)的函数解析式;
(Ⅱ)当月生产量在
万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件). (注:月利润=月销售收入+月国家补助-月总成本).








(Ⅰ)写出月利润


(Ⅱ)当月生产量在
