- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- + 导数及其应用
- 导数的概念和几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点


(1)若


(2)若


(3)若



其中正确结论的个数是( )
A.3 | B.2 | C.1 | D.0 |
(本小题满分12分)已知函数
.
(I)若函数
在
上是减函数,求实数
的取值范围;
(II)令
,是否存在实数
,使得当
时,函数
的最小值是
,若存在,求出实数
的值,若不存在,说明理由?
(III)当
时,证明:
.

(I)若函数



(II)令






(III)当


如图边长为2的正方形花园的一角是以A为中心,1为半径的扇形水池.现需在其余部分设计一个矩形草坪PNCQ,其中P是水池边上任意一点,点N、Q分别在边BC和CD上,设∠PAB为θ.
(I)用θ表示矩形草坪PNCQ的面积,并求其最小值;
(II)求点P到边BC和AB距离之比
的最小值.
(I)用θ表示矩形草坪PNCQ的面积,并求其最小值;
(II)求点P到边BC和AB距离之比


如图,P(x0, f (x0))是函数y ="f" (x)图像上一点,曲线y ="f" (x)在点P处的切线交x轴于点A,PB⊥x轴,垂足为B. 若ΔPAB的面积为
,则
与
满足关系式( )





A.![]() ![]() | |
B.![]() | C.![]() |
从边长为
的正方形铁皮的四个角各截去一个边长为
的小正方形,再将四边向上折起,做成一个无盖的长方体铁盒,且要求长方体的高度
与底面正方形的边长的比不超过常数
.
问:(1)求长方体的容积
关于
的函数表达式;(2)
取何值时,长方体的容积
有最大值?




问:(1)求长方体的容积



