- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- + 导数及其应用
- 导数的概念和几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,现要在边长为
的正方形
内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为
(
不小于
)的扇形花坛,以正方形的中心为圆心建一个半径为
的圆形草地.为了保证道路畅通,岛口宽不小于
,绕岛行驶的路宽均不小于
.

(1)求
的取值范围;(运算中
取
)
(2)若中间草地的造价为
元
,四个花坛的造价为
元
,其余区域的造价为
元
,当
取何值时,可使“环岛”的整体造价最低?









(1)求



(2)若中间草地的造价为







(本小题满分14分)已知函数
(1)当
时, 证明: 不等式
恒成立;
(2)若数列
满足
,证明数列
是等比数列,并求出数列
、
的通项公式;
(3)在(2)的条件下,若
,证明:
.

(1)当


(2)若数列





(3)在(2)的条件下,若


已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.
如图所示,某建筑公司要在一块宽大的矩形地面上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线
的一部分,栏栅与矩形区域的边界交于点
,
,交曲线于点
,设
.

(1)将
(
为坐标原点)的面积
表示成
的函数
;
(2)若在
处,
取得最小值,求此时
的值及
的最小值.






(1)将





(2)若在




定义在定义域
内的函数
,若对任意的
都有
,则称函数
为“妈祖函数”,否则称“非妈祖函数”.试问函数
,(
)是否为“妈祖函数”?如果是,请给出证明;如果不是,请说明理由.






