刷题首页
题库
高中数学
题干
如图,现要在边长为
的正方形
内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为
(
不小于
)的扇形花坛,以正方形的中心为圆心建一个半径为
的圆形草地.为了保证道路畅通,岛口宽不小于
,绕岛行驶的路宽均不小于
.
(1)求
的取值范围;(运算中
取
)
(2)若中间草地的造价为
元
,四个花坛的造价为
元
,其余区域的造价为
元
,当
取何值时,可使“环岛”的整体造价最低?
上一题
下一题
0.99难度 解答题 更新时间:2014-02-25 06:42:39
答案(点此获取答案解析)
同类题1
如图(1)是一个仿古的首饰盒,其左视图是由一个半径为
分米的半圆和矩形
组成,其中
长为
分米,如图(2).为了美观,要求
.已知该首饰盒的长为
分米,容积为4立方分米(不计厚度),假设该首饰盒的制作费用只与其表面积有关,下半部分的制作费用为每平方分米2百元,上半部制作费用为每平方分米4百元,设该首饰盒的制作费用为
百元.
(1)写出
关于
的函数解析式;
(2)当
为何值时,该首饰盒的制作费用最低?
同类题2
(本小题满分14分)某地拟建一座长为
米的大桥
,假设桥墩等距离分布,经设计部门测算,两端桥墩
、
造价总共为
万元,当相邻两个桥墩的距离为
米时(其中
),中间每个桥墩的平均造价为
万元,桥面每1米长的平均造价为
万元.
(1)试将桥的总造价表示为
的函数
;
(2)为使桥的总造价最低,试问这座大桥中间(两端桥墩
、
除外)应建多少个桥墩?
同类题3
设甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/小时,已知该汽车每小时的运输成本
P
(元)关于速度
v
(千米/小时)的函数关系是
.
(1)求全程运输成本
Q
(元)关于速度
v
的函数关系式;
(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值.
同类题4
如图,某地有三家工厂,分别位于矩形
ABCD
的顶点
A
,
B
以及
CD
的中点
P
处,已知
AB
=20km,
CB
=10km,为了处理三家工厂的污水,现要在矩形
ABCD
内(含边界),且与
A
,
B
等距离的一点
O
处建造一个污水处理厂,并铺设排污管道
AO
,
BO
,
OP
,设排污管道的总长为
km.
(I)设
,将
表示成
的函数关系式;
(II)确定污水处理厂的位置,使三条排污管道的总长度最短,并求出最短值.
同类题5
某工艺品厂要生产如图所示的一种工艺品,该工艺品由一个实心圆柱体和一个实心
半球体
组成,要求半球的半径和圆柱的底面半径之比为
,工艺品的体积为
。现设圆柱的底面半径为
,工艺品的表面积为
,半球与圆柱的接触面积忽略不计。
(1)试写出
关于
的函数关系式并求出
的取值范围;
(2)怎样设计才能使工艺品的表面积最小?并求出最小值。
参考公式:球体积公式:
;球表面积公式:
,其中
为球半径.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
成本最小问题